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Abstract—The rise of intelligent vehicle systems will lead
to more human-machine interactions and so there is a need
to create a bridge between the system and the actions and
behaviours of the people inside the vehicle. In this paper,
we propose a dual camera setup to monitor the actions and
behaviour of vehicle passengers and a deep learning architecture
which can utilise video data to classify a range of actions.
The method incorporates two different views as input to a 3D
convolutional network and uses transfer learning from other
action recognition data. The performance of this method is
evaluated using an in-vehicle dataset, which contains video
recordings of people performing a range of common in-vehicle
actions. We show that the combination of transfer learning
and using dual viewpoints in a 3D action recognition network
offers an increase in classification accuracy of action classes
with distinct poses, e.g. mobile phone use and sleeping, whilst
it does not apply as well for classifying those actions with small
movements, such as talking and eating.

I. INTRODUCTION

The fast pace of advances in technology has provided

vehicles with an ever increasing range of intelligent features

designed to aid drivers and passengers and help them have

safe and comfortable vehicle journeys. At the current rate of

development, driving itself will become an optional experi-

ence in the near future and the vehicle will take you to your

desired destination without manual intervention. With fully-

autonomous vehicles everyone inside the vehicle will thus be

relegated to being a passenger, and so there is an increasing

need to find ways to tailor the experience to the needs of a

passenger, rather than to the needs of a driver only.

Currently, features such as adaptive cruise control and

ADAS technologies such as self-parking improves a driver’s

performance, but with the shift to autonomy, there will

eventually be just as many convenience features applicable

to everyone inside the vehicle and so accurate occupant

state monitoring is essential. Monitoring actions, gestures

and behaviours can improve the experience from the moment

an occupant enters the vehicle. For example, if the vehicle

recognises a person, it could automatically adjust the seat

position, and during a journey if a person is asleep, the
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vehicle might change the ride settings to give maximal

comfort. The observation of actions and behaviours needs

to be seamless and non-invasive: not require the need to

wear sensors on the person. Video cameras combined with

machine learning algorithms are ideal for this purpose: they

are relatively cheap and unobtrusive, and computer vision

methods can be effectively applied to recognise human poses

and gestures.

Passenger state monitoring aims to recognise actions and

behaviours of vehicle occupants to help personalise and

enhance the vehicle experience. Occupant state monitoring,

focused on passengers, is in its infancy with current literature

using single shot images rather than video [1]. In this paper

we propose: (1) a 3D convolutional neural network (CNN)

model which analyses video data to classify common actions

inside a vehicle; (2) utilise two different viewpoints from two

different cameras inside the vehicle and evaluate performance

of the 3D CNN model; (3) analyse whether data from

the domain of action recognition can be applied to vehicle

occupant state monitoring by using transfer learning.

II. RELATED WORK

Vision-based action recognition is a popular field of re-

search as it has a number of applications, ranging from

surveillance and behaviour analysis [2] to facilitating human-

computer interactions [3]. For vehicle applications, cameras

have been used to improve the safety of the occupants:

external cameras can be used to detect and avoid pedestrians

and other road users [4], whilst in-vehicle cameras have

been used to detect driver state to enable a vehicle to alert

the driver when they are becoming inattentive, distracted or

drowsy [5].

A. Action Recognition

In the past, motion-based descriptors such as histograms of

optical flow (HOF) and motion boundary histograms (MBH)

have been employed to recognise actions [6]. Recently, how-

ever, from their success in still-image recognition tasks [7]

deep learning techniques have been increasingly applied to

action recognition.

Simmoyan and Zisserman [8] presented a novel CNN ap-

proach to action recognition, this method gives an increase in

performance over motion-based descriptor methods scoring

88.0% overall accuracy compared to 85.9% of [6] in UCF-

101 [9], a widely used action dataset. They developed a two-

stream model which averages the prediction gained from a



single RGB image frame and also a collection of optical

flow frames, with each individual prediction made through a

pre-trained ImageNet 2D CNN [7]. This method enables the

network to gain temporal information from the optical flow

in addition to spatial information from RGB image channels.

Alternatively, others have attempted a more direct approach

using a CNN which extracts directly the temporal and spatial

information from the raw video data. In order to analyse

3D data, they apply 3D convolutions, hence building a 3D

CNN. The work of Tran et al. [10] has popularised the 3D

architecture, called the C3D model, it achieves 82.3% in

UCF-101. Further improvements to this model by others,

such as [11], have shown that increasing the temporal length

of inputs and incorporating optical flow features improves the

performance to 92.7% in UCF-101.

Further accuracy improvements have been achieved by pre-

training on a large dataset beforehand, shown in [12], they

also created a new model I3D. I3D utilises RGB and optical

flow and is shown to have state-of-the-art results when pre-

trained on a database which consists of 400 action classes,

(Kinetics) [13]. RGB-I3D, the version of I3D which only uses

RGB frames as input, achieves 95.6% overall accuracy in

UCF-101, while the two-stream I3D achieves 98.0% accuracy

with Kinetics pre-trained weights.

Recently, the 3D ResNet architecture has been shown to

achieve better results than C3D and have comparable results

to RGB-I3D if Kinetics is used for pre-training, with 3D

ResNeXt attaining 94.5% accuracy in UCF-101 [14]. This

further reinforces the observation that deep 3D architectures

are effective for video action recognition, though with the

caveat that it helps to pre-train on a sufficiently large database

such as Kinetics. Additionally, since 3D ResNeXt’s input is

four times smaller than RGB-I3D, the model is more efficient

than the RGB-I3D whilst still achieving similar performance.

B. Occupant State Monitoring

Occupant state monitoring is the detection of the actions

and behaviours of all the people that are inside a vehicle.

Using this information, the vehicle can be adapted and per-

sonalised to suit each occupant’s individual taste, to improve

the in-vehicle experience. Currently, most of these monitor-

ing methods have been developed to solely aid the driver,

detecting whether a driver is fatigued or distracted in order to

prevent accidents. Following their success on general action

recognition problems, occupant state monitoring frameworks

have also started to employ deep learning methods.

For example, in [5] a CNN model is used to detect phone

activity and whether a driver’s hands are on the wheel by

locating the eye, ears and mouth regions. Next, these regions

are used as inputs to a CNN to classify one of the six states:

eyes open/closed, mouth normal/eating, and ear normal/on

phone. Their experimental results show that they achieve an

overall accuracy of 95.6%.

Yan [15] created a CNN model which can classify driver

state directly from image data and [16] uses the whole image

and the hand, face and skin regions as input. The hand, face

and skin regions are separately detected also using a CNN

beforehand. The method achieves a remarkable accuracy of

99.8% in recognising pose.

In a recent paper by Tu et al. [1], passengers are incorpo-

rated into the occupant state monitoring model. They use a

CNN model to directly predict the states of passengers from

an RGB image. The input data is aligned to correspond with

images of the training data in order to improve performance.

The passenger states predicted are: calling on a mobile phone,

drinking, resting, talking and mobile phone use in hand. The

overall accuracy of the method is 75.3%.

With these methods, we see that CNNs are capable of

being used as feature detectors for specific areas such as

the face and hands, and they are also shown to be useful

when analysing an entire image. Furthermore, they have

been shown to be applicable to the vehicle occupant state

monitoring domain, although presently their use is limited to

single frame image data.

C. Driver/Passenger State Monitoring Datasets

For driver monitoring there are two significant datasets:

• Southeast University Driving-posture Dataset (SEU

dataset) [17] - This contains 6 driver actions: calling,

eating, braking, wheel use, phone use, and smoking.

There are 20 participants: 10 male and 10 female.

• Driver Distraction Dataset [16] - This recently pub-

lished dataset features 10 driver distraction actions,

which include talking, mobile use, reaching for items

and drinking. There are 31 participants (22 male and 9

female), filmed in 4 different vehicles, containing a total

of 17, 308 frames.

For action recognition evaluation, there are several com-

monly used datasets for training and benchmarking machine

learning models: HMDB-51 [18] and UCF-101 [9] have

been available since the early years of action recognition

research and are regularly used as benchmarking methods,

even though the consensus is that they do not contain enough

data to train deep CNNs. Datasets such as Activity-Net [19]

were created to build more accurate action recognition

models, although Activity-Net still has insufficient data to

create robust CNN models. The Kinetics [20] dataset was

acquired for this purpose and contains an abundant quantity

of video data for training. The profiles of these datasets are

summarised below:

• UCF-101 - Contains 101 action classes. There are

13, 320 clips and the average duration of each video

is approximately 7 seconds.

• HMDB-51 - Contains 51 action classes. There are

6, 766 videos and the average duration of each video

is approximately 3 seconds.

• Activity-Net - Contains 200 action classes. There are

approximately 137 videos for each class, 28, 108 total

action instances and there is about 849 hours of video.

• Kinetics - Contains 400 action classes. There are more

than 400 videos for each class and the total number of

frames is greater than 300, 000.



(a) Call (b) Drink (c) Eat (d) Normal

(e) Sleep (f) Talk (g) Text

Fig. 1. Passenger state image examples.

The dataset used in this paper is new:

• Warwick Passenger State Monitoring Dataset - The

dataset contains 13 individuals and there are 7 labelled

actions. The dataset has over 250, 000 frames. More

details are outlined III-B Data Collection.

III. EXPERIMENTAL SETUP

A. Cameras

Two identical GoPro Hero 5 cameras were used in the ex-

periments, each held in place on the rear passenger windows

using suction cup accessories. The cameras were placed at

the top right corner of the window to obtain a wide field of

view and to capture the occupant in the seat furthest from

the camera. The video resolution of the RGB cameras is 4K

at a size of 3840×2160, the footage was filmed at a 30 FPS,

using ISO 400 with the default automatic exposure settings.

B. Data Collection

The videos were filmed in a full-sized Sport Utility Vehicle

(SUV) while stationary. Subjects were asked to act out a

range of actions, including talking to each other, mobile

phone use, eating and drinking. The SUV dual viewpoint

passenger action dataset contains the following states:

1) Call - The subject acts out the process of picking up a

phone call, talking on a phone call and ending the call.

2) Drink - The subject obtains their drink container from

where it was resting and takes a drink out of it and

places it back to its location.

3) Eat - The subject obtains a small item of food (e.g. a

chocolate bar or sandwich) and eats it, at the end the

subject discards any waste into a compartment.

4) Normal - The subject is in a neutral state and not

performing any of the other actions.

5) Sleep - The subject pretends to sleep.

6) Talk - The subject is conversing with another passenger.

7) Text - The subject is using their phone (excludes the

process of dialling/selecting a phone number).

Figure 1 shows image examples of the various states from the

dataset. The dataset consists of 13 unique individuals, 9 male

and 4 female, with each individual having approximately
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(a) Single Viewpoint. (b) Dual Viewpoint.

Fig. 2. The passenger state classification pipelines: (a) The pipeline for a
single viewpoint model; (b) The pipeline for a dual viewpoint model.

15 minutes of video of them enacting out various actions,

totalling over 250, 000 frames.

IV. METHOD

To detect a passenger action state a set of 16 frames are

taken from the video data off a single camera, this set is then

propagated through a 3D CNN to classify a single action

state, one of the 7 states: calling, drinking, eating, normal,

sleeping, talking, or texting. The single viewpoint method is

shown in Figure 2a. Similarly for a dual viewpoint model,

16 frames are extracted from each viewpoint to be processed

by a dual 3D CNN, this is shown in Figure 2b.

A. Network Architecture

There have been great advances in recent years towards 2D

image recognition CNNs whereas 3D networks architectures

have been less common and have generally not performed as

well as their 2D counterparts. Recently for action recognition,

it was shown that 3D CNN architectures can be successfully

applied [10] [13] [14]. One of the methods has shown that

the ResNet architectures can be applicable to video action

recognition as long as they are pre-trained on a large action

recognition dataset [14].

These ResNet models perform comparably with other

action recognition 2D and 3D architectures, with some

variations of the ResNet architecture performing better than

the state of the art. The principal idea behind the ResNet

architecture is that it provides a shortcut between layers

which enabling training of even deeper networks [21]. The

variation used here is the ResNeXt-101 architecture [22]

which has been shown to have the best accuracies when

pre-trained with the Kinetics dataset. ResNeXt introduces

cardinality, referring to the number of convolutional groups

located in the central ResNet block, and is shown to be more

effective than using deeper or wider networks.

As analysing two viewpoints in parallel is already very

computationally expensive without the burden of estimating

optical flow as well, a 3D architecture using only RGB

frame data is preferred in this case. Moreover, 3D ResNet



TABLE I
SINGLE VIEWPOINT 3D RESNEXT-101 ARCHITECTURE

Stage 3D ResNeXt-101

conv1 7 × 7 × 7, 64, stride 2

conv2

3 × 3 × 3 max pool, stride 2





1 × 1 × 1, 128

3 × 3 × 3, 128

1 × 1 × 1, 256



 × 3

conv3





1 × 1 × 1, 256

3 × 3 × 3, 256

1 × 1 × 1, 512



 × 4

conv4





1 × 1 × 1, 512

3 × 3 × 3, 512

1 × 1 × 1, 1024



 × 23

conv5





1 × 1 × 1, 1024

3 × 3 × 3, 1024

1 × 1 × 1, 2048



 × 3

global average pool,

7-d fc,

softmax

architectures that use only RGB data, when pre-trained on

the Kinetics data beforehand, have been shown to have

comparable performance to the two-stream 2D RGB-Optical

flow architectures [20].

Here, a passenger state classification 3D ResNeXt CNN

was pre-trained on the Kinetics dataset and is retrained to

work with our vehicle passenger video dataset. To customise

the network to fit the 7 classes in the single viewpoint model,

the fully pre-trained connected layer weights are discarded

and replaced with a new fully connected layer with randomly

initialised weights and 7 outputs. The model architecture

for a single viewpoint is shown in Table I. Each ResNeXt

residual block [22] performs grouped convolutions with 32

groups, and after every convolutional layer there is batch

normalization and a ReLU activation layer. There is also

downsampling, with a stride of two, that is performed in the

first ResNeXt residual block in convolution layers 3, 4 and

5.

In the dual viewpoint model, for each view a separate 3D

ResNeXt CNN is built and trained. Then pre-trained weights

are reused, and the fully connected layers are replaced with

a fresh fully connected layer with 512 units. The outputs of

both these networks are then joined by final fully connected

layer with 1024 features and 7 outputs, representing the 7

actions states.

B. Dataset Preprocessing

We take advantage of the fact that the camera positions are

fixed and so the video can be pre-processed to make it easier

to classify. The right viewpoint video data is cropped and

zoomed in a way to focus only on the subject, leaving out

background information so that the model can focus mainly

on the subjects’ movements and not on the surroundings.

Figure 3e shows an example of the final input from the right

viewpoint. Moreover, for the left viewpoint video data, the

(a) Original right camera image. (b) Original left camera image.

(c) Right centre cropped. (d) Left cropped at right edge.

(e) Right image zoomed. (f) Left image masked.

Fig. 3. To get an input from the right camera, the original right image (a)
is centre cropped, result shown in (c), and then zoomed in to get (e). To get
an input from the left camera, the original left image (b) is square cropped
from the rightmost edge, result shown in (d), and afterwards a triangular
mask is applied on the top left of the image to get (f).

other side of the vehicle can be masked out leaving only the

subject in view. This is to help prevent the network learning

what the other passenger is doing as it may be detrimental in

determining a subject’s actions. Figure 3f shows an example

of the masked left viewpoint.

C. Training

To choose training samples the video clips were converted

into frames at a frame rate of 30 FPS. Clips ranged from a few

seconds to a few minutes, each with a single action. To obtain

a 16-frame segment, a random starting point was uniformly

chosen in the video clip. Then 16 consecutive frames were

selected as a data sample, wrapping around to the start of the

segment should less than 16 frames remain.

The procedure to augment the data was similar to that

described in [23]. Multi-scale cropping was used, with crops

starting at either each corner or the centre of the frame image,

the scale being one of {100%, 90%, 80%, 70%, 60%, 50%}.

The mean of the dataset used in training is subtracted from

each colour channel in each individual frame. Each colour

frame image is cropped and scaled to have an aspect ratio of

1 : 1 and have an image size of 112× 112. The total size of

each input image is 3 × 16 × 112 × 112, which represents

channels, frames, width and height respectively.

The number of epochs, iterations over the entire dataset,

ranged from 200−500. A small learning rate was use to fine-

tune the pre-trained model, the learning rate was initially set

as 1e−3 and if the validation loss does not show change after

10 epochs the learning rate is scaled down by a factor of 10.

The training is performed in batches of 32 for the single



TABLE II
MODEL A - RIGHT VIEWPOINT MODEL

F1-SCORE: 50.9%

Call Drink Eat Norm Sleep Talk Text

0.98 0.01 0.00 0.00 0.00 0.00 0.00

0.02 0.98 0.00 0.00 0.00 0.00 0.00

0.37 0.52 0.04 0.05 0.00 0.00 0.02

0.12 0.00 0.00 0.30 0.00 0.41 0.16

0.00 0.00 0.00 0.49 0.24 0.27 0.00

0.15 0.00 0.00 0.21 0.00 0.44 0.20

0.00 0.00 0.03 0.01 0.01 0.00 0.95

TABLE III
MODEL B - LEFT VIEWPOINT MODEL

F1-SCORE: 48.3%

Call Drink Eat Norm Sleep Talk Text

0.71 0.05 0.00 0.25 0.00 0.00 0.00

0.00 0.99 0.01 0.00 0.00 0.00 0.00

0.14 0.63 0.14 0.09 0.00 0.00 0.00

0.04 0.00 0.02 0.89 0.00 0.03 0.02

0.00 0.00 0.00 0.61 0.39 0.00 0.00

0.10 0.00 0.03 0.66 0.00 0.12 0.10

0.09 0.00 0.03 0.36 0.00 0.00 0.51

viewpoint models and batches of 16 for the dual viewpoint

models. Cross-entropy loss is used, and the network is trained

using stochastic gradient descent (SGD) with momentum 0.9.

The weight decay is set to 1e−3.

D. Testing

The video clips are split into one second segments and it is

verified by hand that they contain one of the seven actions.

These shortened video clips can either contain the start of

the action, the end of the action or anything in between.

The video segments are then converted to frames, with the

frame rate at 30 FPS, so each one second segment contains

30 frames. A sliding window method is then adopted to

obtain the class label: the first 16 frames are inputted into

the network and the output label scores are stored, the next

16 frames are chosen with the first 8 frames being from

the previous segment’s and the output of this is also stored,

and so on. At the end, the output score of all the 16 frame

segments are averaged and the maximum of this is the action

label given to the clip.

V. RESULTS

Models are trained using various viewpoints and initialised

with various weights. For all models, the training, validation

and testing uses a unique individual split: there are 13 unique

individuals and the split for train/validation/test is 7/2/4.

Tables II to V show the results in confusion matrices form

for the following models:

TABLE IV
MODEL C - DUAL VIEWPOINT MODEL

F1-SCORE: 60.6%

Call Drink Eat Norm Sleep Talk Text

0.97 0.00 0.00 0.03 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.89 0.10 0.01 0.00 0.00 0.00

0.01 0.00 0.00 0.54 0.00 0.35 0.10

0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.01 0.00 0.00 0.42 0.00 0.39 0.18

0.00 0.00 0.02 0.01 0.00 0.01 0.96

TABLE V
MODEL D - PRE-TRAINED DUAL VIEWPOINT MODEL

F1-SCORE: 74.7%

Call Drink Eat Norm Sleep Talk Text

0.99 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.42 0.56 0.02 0.00 0.00 0.01

0.10 0.00 0.00 0.55 0.00 0.23 0.12

0.00 0.00 0.00 0.25 0.75 0.00 0.00

0.14 0.00 0.00 0.33 0.00 0.36 0.17

0.00 0.01 0.01 0.02 0.00 0.00 0.95

a) Model A - This model is trained exclusively on only

video from the right camera. The model is initialised

with Kinetics weights.

b) Model B - This model is trained exclusively on only

video from the left camera. The model is initialised with

Kinetics weights.

c) Model C - This model is trained on video from both

cameras. The model is initialised with Kinetics weights.

d) Model D - This model is trained on video from both

cameras. The model is initialised with Model A’s and

Model B’s weights.

A. Right Viewpoint

Table II shows the results of Model A, the right viewpoint

model. On the whole, the model performs poorly, achieving

a weighted F1-Score of 50.9%. However, it performs par-

ticularly well on the call, drink and text state, with these

states reaching accuracy rates of 95% or higher. The actions

of these classes are very distinct and so the model has little

difficulty in labelling these actions even with a small input

resolution from the video stream. Figure 4 shows examples

of these correct classification inputs. However, this is not the

case with the normal, sleeping and talking states, as these

actions score poorly with accuracies between 24% and 44%.

The sleeping class is being misclassified between the normal

and talk states. A reason why the accuracies of these three

actions are relatively low is because the input resolution may

be too poor to perceive any detailed changes. For example,

the movements during talking represent only small changes in



(a) Call.

(b) Drink.

(c) Text.

Fig. 4. Correctly classified input images.

the spatial and temporal dimensions in 112×112 frames. An

example of this misclassification is shown in Figure 5b. The

eating class also performs poorly on right viewpoint video

input, with only 4% accuracy and is mostly misclassified as

the call or drink state. A possible explanation for this is that

again the resolution is too small to see any object a person is

holding, and so the model defaults to the drink case, or the

model misclassifies the object as a phone instead. Another

reason the model misclassifies the eat state as the call state,

is that it may be observing that the raising arm action during

eating is similar to the raising arm action of taking a phone

call. Figure 5a shows an eat misclassification case where it

could be that either the model considers the motion to be

similar to drinking, or that the item is more similar to a drink

than what it perceives as food, this may also be misclassified

because there is a drink in the image as well.

B. Left Viewpoint

Table III shows the results of Model B, the left viewpoint

model. Overall, this model also performs just as poorly,

achieving a weighted F1-Score of 48.3%. It only performs

well in the drink and normal states, having accuracy rates of

99% and 89% respectively. Although for the normal state,

the model classifies this as the default when it cannot choose

an action correctly it appears to default to the normal state.

Compared to the Model A, the right viewpoint model, the

eating class again gets misclassified as the drink state or call

state, again for similar reasons. A downside of using only

the left viewpoint is that it obscures a subject’s hands, as

most subjects were right-handed the call and text are not

seen fully and so this model achieves accuracies of 71% and

(a) Eat misclassified as drink.

(b) Talk misclassified as normal.

(c) Text misclassified as normal.

Fig. 5. Misclassified input images.

51% respectively (compared to the right viewpoint model

where the accuracies are almost perfect). Figure 5c shows

an example of this obscurement. Unfortunately, even with

the view of the subject’s face being clearer, since the left

viewpoint video view is largely a close-up of the subject’s

face, the action states which might be thought to improve,

such as eating, sleeping and talking, only show a minor

improvement. This may be a resolution effect or more likely

to do with insufficient training data for those classes.

C. Dual Viewpoint

Table IV shows the results of Model C which takes both

the left and right viewpoints as input to a dual viewpoint

3D CNN. Overall, this model achieves a weighted F1-Score

of 60.6%, approximately a 10% improvement over single

viewpoint models. It performs exceptionally well on the

call, drink, sleep and text states achieving accuracy rates

of 96% or higher. These actions show very noticeable body

movement and body positions and since the model has both

viewpoints it does not find difficulty in discerning them. The

eat class performs poorly, achieving a very low 14% accuracy

rate, with it being largely misclassified as the drink state.

Thus, the model is probably classifying eating objects as

drinking objects. Furthermore, despite having two viewpoints

the normal and talk actions are still being mixed up, which

seems to support the hypothesis that a video resolution of

112×112 is insufficient to reliably discern facial movements.

Table V shows the results of Model D which takes both

viewpoints and uses the weights of the previous models,

Model A and Model B, to initialise the dual viewpoint

3D CNN. Previously, the models were only initialised with



Kinetics weights, in this case the model is initialised with

weights from earlier models to improve the convergence to

an optimal solution. Model D achieves a weighted F1-Score

of 74.7%, a 14.1% improvement compared to initialising

from weights which are not tailored to action recognition

inside vehicles. This model suffers similar misclassification

problems as Model C, the one initialised using Kinetics,

although now the eat class has an accuracy rate of 56%.

Compared to Model C the sleep class accuracy has fallen

from 100% to 75%, with misclassification as the normal

class. A possible reason why is that model is giving greater

weight to the normal class when the subject is still rather

than concentrating on the eyes, although of course since the

resolution is small it is often difficult to see the changes in

eye state.

VI. CONCLUSIONS

We propose a method for recognising common actions of

passengers inside the vehicle. It consists of using inward

facing cameras on each side of the vehicle. The video data

from both cameras is then used as input into a 3D convolution

neural network, the output being a single distinct action state.

The use of a 3D CNN helps incorporate temporal information

of actions as well as the spatial information. Additionally,

the use of dual viewpoints aids the model in overcoming

occlusions and perceiving more detail from a subject from a

different viewpoint. Furthermore, the CNN model was pre-

trained on a general action recognition dataset beforehand,

demonstrating that transfer learning can be used from help

the model gain better recognition rates. For evaluation, data

was collected in a stationary vehicle with subjects enacting

various common actions and behaviours, which ranged from

talking to mobile use. The results show that there is an

advantage in using dual viewpoints and applying transfer

learning to action video data from a vehicle.

This paper has demonstrated that a multiple camera ap-

proach for in-vehicle passenger state recognition is feasi-

ble, and could enable camera systems to be successfully

incorporated into systems which non-invasively interface with

passengers. Future work will address the limitations of the

presented approaches, involving collecting and analysing

data from moving vehicles. We will also evaluate near IR

cameras and operation in low-light and night-time driving.

Furthermore, additional subjects will be recruited, and data

will be collected in different types of vehicles to evaluate

the robustness of 3D CNN classification. A limitation to the

accuracy of the system to eating and drinking states might

be overcome by incorporating a third channel of information

taken from the face regions of the two viewpoints, and this

will be investigated.
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