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Abstract. The advent of autonomous and semi-autonomous vehicles has meant
passengers now play a more significant role in the safety and comfort of vehicle
journeys. In this paper, we propose a deep learning method to monitor and clas-
sify passenger state with camera data. The training of a convolutional neural
network is supplemented by data captured from vehicle occupants in different
seats and from different viewpoints. Existing driver data or data from one vehicle
is augmented by viewpoint warping using planar homography, which does not
require knowledge of the source camera parameters, and overcomes the need to
re-train the model with large amounts of additional data. To analyse the perfor-
mance of our approach, data is collected on occupants in two different vehicles,
from different viewpoints inside the vehicle. We show that the inclusion of the
additional training data and augmentation by homography increases the aver-
age passenger state classification rate by 11.1%. We conclude by proposing how
occupant state may be used holistically for activity recognition and intention
prediction for intelligent vehicle features.
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1 Introduction

With the advent of autonomous and semi-autonomous vehicles, and smart vehicles sys-
tems, all the occupants inside a vehicle have become relevant to safety and comfort. In
recent years, the focus has been mainly on monitoring the driver, for example whether
they are alert [16], or paying attention to the road [20]. In self-driving vehicles, the
type of behaviour and actions being monitored are not limited to safe driving and it
is important for the vehicle to sense if the driver is in a state to regain control if re-
quired, so called hand-over from autonomous driving to driver control. Knowing the
state and behaviour of the occupants, including the driver, is also useful for optimising
the in-vehicle experience, which involves monitoring the state of all occupants. Many
car manufacturers, such as Jaguar Land Rover, are developing and building new in-
telligent vehicle systems (e.g. ADAS [9]) for semi-autonomous and connected vehicles,
and being able to monitor and predict occupant state is a vital parameter in designing,



optimising and adapting a car’s intelligent vehicle systems so as to maximise the safety
and comfort of a journey [6].

A way to observe and analyse the actions and behaviours of vehicle occupants is to
use inward facing cameras, which have the advantage that they are relatively cheap and
general purpose sensors. Computer vision-based methods are proposed where image
features are detected as proxies of driver state. The signals captured from imagery
have been shown to be robust in identifying driver fatigue and distraction, for example
see [10] [2].

Deep learning using Convolutions Neural Networks (CNNs) classification methods
have been demonstrated to work effectively for a variety of visual object classification
problems, provided there is sufficient training data available, an appropriate deep ar-
chitecture can be realised that generalises well to unseen data, e.g. [13]. CNNs have
been shown to be more effective and have less overfitting when the size of the training
data is increased [3] [17]. One way to increase the amount of training data is to augment
the data, data augmentation is the process of transforming the data without altering
the data’s labels - a common practice in visual-based problems is to apply geometric
transformations such as rotations, scaling, flips, etc. [13].

Recent related works involving driver behaviour include a paper by Yan [23], using
the Southeast University Driving-posture Dataset (SEU dataset) by [25] designed a
CNN model to identify 6 driver actions: calling, eating, braking, wheel use, phone use,
and smoking. They used 2 inputs to the CNN, a primary input and a secondary input;
the primary input was a bounding box around the whole driver in the image, and the
secondary input was a set of skin regions. Their method was successful in determining
the correct action, even when two actions were very similar, achieving a mean average
precision of 97.8%. A CNN trained on 4 different driver postures, driving, answering
phone call, eating and smoking, with an overall accuracy of 99.8% was used in [21].
For driver gaze detection, in the main step determines which of the 9 different gaze
zones the driver was looking at. This method achieves an average of 95% accuracy [4].
Another method, [22] uses a CNN model to predict driver fatigue and distraction
from the locating the eye, ears and mouth, and achieves overall accuracy of 95.6% in
classifying the six states: eyes open/closed, mouth normal/eating, and ear normal/on
phone.

Though actions are usually associated with movement and so video is required, it
transpires that many simple actions can be identified from only still imagery. Deep
learning utilising CNNs for action recognition has proved effective at image classifica-
tion and object detection which rely heavily on image features [18] [11] [7]. An action
can be determined from contextual cues, such as a person’s pose or the presence of an
object. For example, Gkioxari’s [7] action recognition method exploits this by marking
bounding boxes around the subject and bounding boxes around relevant contextual
cues and then using these as inputs to a CNN, in a manner similar to Yan’s driver
monitoring method [23].

Because passenger state monitoring and action detection is still in its infancy and
focused on the driver, there is limited data available depicting passenger state, and
much of this data relevant for driver behaviour, and action classification pertinent to
vehicle safety. In this paper, we: (1) estimate projective transformations (planar homog-
raphy) [8] to compute approximate viewpoint corrections to re-use driver monitoring
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Fig. 1: The passenger state classification pipeline: (a),(b) A target viewpoint is chosen
and all remaining image data will be aligned to that viewpoint using planar homogra-
phy, (c); (d) Comparison of target and test viewpoints; (e)-(g) Deep state classification
using a trained CNN.

data for passenger state classification; (2) widen the set of states detected to those
of interest to semi-autonomous and autonomous vehicles; (3) augment the data set to
generalise for small camera motions, including homography, and; (4) train and analyse
the performance of a CNN for passenger state classification. We demonstrate that the
approach has a number of benefits: it enables the large amounts of existing driver state
monitoring data to be re-used for occupant monitoring in general so explicit changes
in camera positions can be made without the need to recapture passenger data. It also
gives flexibility to the transfer the learning model between vehicles; by augmenting the
data set with randomised projective transformations, the learnt model also becomes
more robust to small view-point changes and generalises better.

2 Method

The proposed method has two stages: image alignment and classification using a convo-
lutional neural network. The image alignment stage chooses a single viewpoint to which
all the other images are mapped and this mapping is calculated by marking correspond-
ing points from two example images. The output of this stage is a view-transformed
dataset where all images are approximately from the same viewpoint. The second stage
consist of re-training a partially-trained CNN model, augmenting the training samples
with small viewpoint variations, regressed to labelled output state, see Figure 1.

2.1 Image Alignment Using Homography

A homography is a projective transformation from one plane to another and can be
defined as the algebraic linear mapping h : R2 7→ R2 is a homography if and only if
there exist a non-singular 3× 3 matrix H such that for any point in R2, represented by



a homogeneous coordinate x, h(x) = Hx [8]. We can express the mapping of a 2D point
(x, y) in homogeneous coordinates as a vector x = (x, y, 1)T , and likewise a target 2D
point (u, v) as u = (u, v, 1)T , through a homography matrix h = (hij):uv

1

 ∼
h11 h12 h13
h21 h22 h23
h31 h32 h33

xy
1

 (1)

This mapping can be solved using the Direct Linear Transform (DLT) algorithm. The
homography matrix h is scale-invariant, meaning multiplying by a non-zero constant
will not change the equations needed to be solved, so h is a homogeneous matrix
representing only 8 degrees of freedom, therefore, there are only 8 unknowns to solve
for. As a result, 4 pairs of (non-colinear) points are required, with each pair of source
and target points providing two equations:

xh11 + yh12 + h13 − xuh31 − yuh32 − uh33 = 0 (2)

yh21 + yh22 + h23 − xvh31 − yvh32 − vh33 = 0

The homographic matrix h can be found by solving, Aih = 0, with SVD, where

Ai =

(
xi yi 1 0 0 0 −uixi −uiyi −ui
0 0 0 xi yi 1 −vixi −viyi −vi

)
. (3)

More accurate estimates of h are obtained with more that 4 point pairs, though to
obtain a single homogeneous solution all the corresponding point pairs need to be
exact. However, in most cases, the point pairs are inexact, so a suitable cost function
will need to be minimised to solve for h [8].

The use of homography in real world applications range from camera calibration to
the 3D reconstruction of a scene using images from different camera viewpoints [24] [5].
In most of these cases, the input and target images are from the same scene, so sim-
ilar feature correspondences such as similar points between images the images can be
found, e.g. using SURF descriptors [1] to stitch together a panorama [12]. However, in
the context of vehicle occupant monitoring, the images from one dataset could be sig-
nificantly different from another dataset, so using a feature detection method will not
be effective. Therefore, input and target images from the corresponding datasets would
require manual labelling. Only a single input and target image needs be chosen, under
the assumption that for each dataset the images are from a fixed or similar camera
viewpoints, otherwise further homography matrices are needed from the additional im-
ages with different camera viewpoints. Using the homography matrix calculated from
the input and target images, all the images from corresponding input dataset are trans-
formed to be similar to the target dataset image’s viewpoint. The resulting datasets
are then be used for training the CNN model, Figure 1a to Figure 1e shows results of
the image alignment process on two different datasets.

2.2 Synthesising Viewpoint Changes

For data augmentation, we apply image warping to our training data set by randomis-
ing using homography given knowledge of the intrinsic camera matrix of the target



Fig. 2: Modified VGG19 network architecture.

viewpoint. The camera projection (without lens distortion) is modelled as by the per-
fect pin-hole camera geometry such that 3D world coordinate points X project to the
camera plane as x through the product of the intrinsic and extrinsic camera matrices,
K and (R|T ), (

x
1

)
∼ K

(
R T
0T 1

)(
X
1

)
(4)

To synthesise small viewpoint changes around the principal axis of the camera i.e.
T = 0, we induce random motions of the principal axis and rotations around this axis.
Letting the quaternion, Q, represent the spatial rotation of θ about the principal axis,
(ax, ay, 1)T , the (z-axis) in camera coordinates:

Q = (axsin(θ/2), aysin(θ/2), sin(θ/2), cos(θ/2)) (5)

then, random motions of the axis and random rotations can be created by drawing
normal random samples ax, ay ∼ N (0, σxy) and θ ∼ N (0, σθ). After normalisation,
the rotations Q(σxy, σθ) are then converted to the matrices R and substituted into
Equation 4 to generate the 3× 3 random homography matrix, H = K(R|0).

2.3 Passenger State Classification

Convolutional neural networks (CNNs) are machine learning models which use multiple
or deep neural network layer, combining a number of operational layers. They can be
trained to learn regressions of pixel values from images and used as supervised classifiers
to learn object classes [14]. Below, we detail the CNN network architecture and training
regime.

Network architecture. The CNN model architecture is based on the commonly
used VGG19 architecture [19] as it has been shown generalise well on a wide range
of datasets. The input to the network was a 224 × 224 RGB image, with the output
being one the 5 states: calling on phone, drinking, resting, talking and texting. The
network architecture used is outlined in Figure 2. To prevent overfitting, dropout with
p = 0.5 was applied to the fully connected layers.

Transfer learning. The passenger state classification CNN was pre-trained on the
ILSVRC 2012 dataset (ImageNet) is retrained to work on our occupant state datasets.
In order to incorporate the model for our own use, the fully connected layer weights



were discarded in the pre-trained model, and randomly initialised weights were used for
these layers. The number of epochs (iteration over entire dataset) ranged from 10−100.
A smaller learning rate was used for the new model’s weights thus effectively fine-tuning
the results. The learning rate was set initially to 1e−3 and decreased accordingly after
5 − 10 epochs, weight decay was set to 1e−6, and was trained in batches of 16 using
stochastic gradient descent (SGD) [15] with momentum 0.9.

3 Experiments and Results

3.1 Dataset

We conducted experiments to create two different datasets, one dataset captured in a
Land Rover SUV and another BMW hatchback. Participants were asked to conduct
typical in-vehicle actions whilst being filmed; these actions included mobile phone use,
eating, drinking, sleeping, and talking. At the end of data collection, the video data was
converted into 1920 × 1080 images, and each image was labelled with a state. States
where there was not enough data were excluded from the final dataset. The states that
are included are the following:

– Call. The occupant has their mobile phone up to their face for a phone call.
– Drink. The occupant is performing a drinking action and actively holding their drink.
– Rest. The occupant is not engaging in any notable activity, this includes sleeping.
– Talk. The occupant is actively engaging in a conversation with another occupant.
– Text. The occupant is looking at their phone and actively using their phone.

The amount of data and the distribution of data is as following:

– Land Rover SUV dataset. This dataset contains 7 people enacting 5 states. There are
36151 images, from 3 different viewpoints, the approximate distribution of images to class
is 30/5/20/15/30 respectively for call/drink/rest/talk/text.

– BMW Hatchback dataset. This dataset contains 8 people enacting 5 states. There are
30340 images, from 2 different viewpoints, the approximate distribution of images to class
is 12/8/30/20/30 respectively for call/drink/rest/talk/text.

Figure 3 shows example images from these datasets and their viewpoints.

3.2 Evaluation

For each dataset, for each viewpoint, we split the images into the following subsets: 80%
of images for training and 20% of images for testing. The training data is further split
into 80% for training and 20% for validation. The data is split according to individual,
so for example, training using the Land Rover data will mean 4 individuals are used
for training, 1 for validation, and 3 for testing. There is no overlap in individuals for
the training, validation, and testing splits. There is no overlap in individuals for splits
between vehicles. The images are randomly picked from each individual and each class
for training, validation, and testing.

We combine the two datasets into one using the proposed homography alignment.
We choose an image from the training set of the BMW back right seat camera viewpoint



Fig. 3: The upper row shows the original images with the 4 different viewpoints from
the camera situated at: (a) Front seat right in the Land Rover (rest state); (b) Back seat
left in the Land Rover (drink state); (c) Back seat right in the Land Rover (talk state);
(d) Front seat right in the BMW (call state); (e) Back seat right in the BMW (text
state). The bottom row shows the transformed images, (e) is the reference viewpoint.

(a) (b) (c) (d) (e)

as the target image, then all other images not from that viewpoint are mapped to
that specified target image using the proposed homography method. The RGB images
are then cropped into a 1 : 1 ratio, by equal clipping of the sides, and resized to a
resolution of 224 × 224. The proposed CNN models are then trained, validated and
tested with a different combination of viewpoints and datasets, and using different
weight initialisations. No data augmentation is used apart from the horizontal flip
required to map the back seat left viewpoint to back seat right viewpoint, and also the
proposed homography alignment.

The performance is compared amongst 9 different models, each is repeated 3 times
with a different split of individuals. The average accuracy of the repeated models will
be used as a guide of performance. The models are the following:

A) A model trained only using BMW. No homography alignment. ImageNet weight ini-
tialisation. Individual train/validation/test split is 4/1/3, the number of images contained
in the split is 4000/1000/1250 respectively.

B) A model trained only using data from the Land Rover. Horizontal flip. No homogra-
phy alignment. ImageNet weight initialisation. Individual train/validation/test split
is 3/1/3, the number of images contained in the split is 6000/1500/1875 respectively.

C) A model trained only using data from the Land Rover. Horizontal flip. No homography
alignment. Model A weight initialisation. Individual train/validation/test split is 3/1/3,
the number of images contained in the split is 6000/1500/1875 respectively.

D) A model trained only using data from the BMW. Homography alignment. ImageNet
weight initialisation. Individual train/validation/test split is 4/1/3, the number of images
contained in the split is 4000/1000/1250 respectively.

E) A model trained only using data from the Land Rover. Horizontal flip. Homogra-
phy alignment. ImageNet weight initialisation. Individual train/validation/test split
is 3/1/3, the number of images contained in the split is 6000/1500/1875 respectively.

F) A model trained only using data from the Land Rover. Horizontal flip. Homography
alignment. Model D weight initialisation. Individual train/validation/test split is 3/1/3,
the number of images contained in the split is 6000/1500/1875 respectively.



G) A model trained using data from the BMW and Land Rover, but only using front
seat viewpoint images. Homography alignment. ImageNet weight initialisation. In-
dividual train/validation/test split is 10/2/3, the number of images contained in the split
is 4000/1000/1250 respectively.

H) A model trained using data from the BMW and Land Rover, but only using back seat
viewpoint images. Horizontal flip. Homography alignment. ImageNet weight initial-
isation. Individual train/validation/test split is 10/2/3, the number of images contained
in the split is 6000/1500/1875 respectively.

I) A model trained using data from the BMW and Land Rover, but only using back seat
viewpoint images. Horizontal flip. Homography alignment. Model G weight initial-
isation. Individual train/validation/test split is 10/2/3, the number of images contained
in the split is 6000/1500/1875 respectively.

3.3 Results

Table 1 shows the accuracy results in confusion matrix form for every model. For
the models with no homography alignment applied, the performance is poor; models
A (Table 1a), B (Table 1b) and C (Table 1c) score under 60% for overall average
accuracy. The models particularly struggle to classify the rest and talk states, often
wrongly predicting between the two. This a persistent problem for all of the models.
Figure 4c shows that the models find it difficult to distinguish between open and closed
mouth states for certain individuals because there are many similarities between these
two states, and given a small image it may not be possible to classify accurately.

The significance of using more data can be seen in the results for Model C; when
the weights are used from Model A to help train Model C, there is an improvement
of 5.2%, increasing the accuracy from 52.0% to 57.2%. The results for Model C in
Table 1c, shows a large increase in accuracy for the talking class, up from 59% to 75%,
albeit at the cost of more classes being misclassified talking - the texting class notably
suffers the most from this. All other classes, except for the texting state, show a minor
improvement from using Model A’s weights.

Models D (Table 1d), E (Table 1e) and F (Table 1f) are A, B and C’s respective
counterparts and are trained using aligned data benefit from applying the proposed
homography alignment process. These models show a substantial improvement, ranging
from an increase of 5.3% to 18.1% in overall accuracy. The call state accuracy for these
models is significantly improved. Although, the call labelled images are mistakenly
misclassified as the talk state, see for example Figure 4a where the presence of a phone
is not easily discernible and the mouth is a much more prominent feature - the converse
also applies.

Model F uses Model D’s weights as initialisation of its weights and helps increase
the overall average accuracy by a significant 11.1% from 64.2% in Model E, where
it just uses ImageNet weights, to 75.3%. The classes all show improvement except
for drinking. The drinking class images exhibit higher misclassification as the resting
class. An example of this is shown in Figure 4b as the passenger performs an unexpected
bottle opening action, the model incorrectly classifies it as the closest looking state,
resting. This is symptom of not having enough data, as noted in Section 3.2, the
drinking state has the fewest images compared to other classes. In contrast to Model
E, Model F shows a major increase in the text state, 56% to 82%, but this is still



Table 1: Confusion matrices for evaluation models: (a)-(c) trained on non-aligned data;
(d)-(f) trained with viewpoint-aligned data; (g)-(i) front seat and back seat state clas-
sification (also aligned data). See main text for details.

(a) Model A (58.8%)

Call Drink Rest Talk Text

0.49 0.32 0.00 0.19 0.00

0.01 0.73 0.03 0.10 0.13

0.00 0.06 0.32 0.54 0.08

0.02 0.07 0.32 0.51 0.09

0.00 0.06 0.00 0.04 0.89

(b) Model B (52.0%)

Call Drink Rest Talk Text

0.27 0.22 0.17 0.25 0.08

0.00 0.71 0.12 0.04 0.13

0.02 0.10 0.44 0.36 0.07

0.02 0.09 0.22 0.59 0.07

0.00 0.16 0.18 0.07 0.59

(c) Model C (57.2%)

Call Drink Rest Talk Text

0.36 0.15 0.09 0.32 0.08

0.01 0.72 0.10 0.12 0.05

0.02 0.11 0.55 0.28 0.04

0.01 0.09 0.12 0.75 0.03

0.00 0.19 0.16 0.16 0.49

(d) Model D (64.1%)

Call Drink Rest Talk Text

0.77 0.05 0.03 0.10 0.05

0.14 0.81 0.00 0.04 0.01

0.02 0.12 0.46 0.31 0.08

0.09 0.05 0.29 0.30 0.26

0.00 0.10 0.01 0.03 0.86

(e) Model E (64.2%)

Call Drink Rest Talk Text

0.65 0.10 0.19 0.05 0.01

0.01 0.83 0.08 0.05 0.03

0.04 0.04 0.76 0.11 0.05

0.01 0.07 0.49 0.42 0.02

0.00 0.20 0.19 0.05 0.56

(f) Model F (75.3%)

Call Drink Rest Talk Text

0.73 0.01 0.15 0.10 0.01

0.02 0.75 0.14 0.06 0.03

0.02 0.05 0.79 0.08 0.06

0.02 0.02 0.22 0.68 0.06

0.00 0.04 0.10 0.05 0.82

(g) Model G (65.5%)

Call Drink Rest Talk Text

0.59 0.32 0.00 0.06 0.03

0.03 0.85 0.08 0.02 0.03

0.02 0.05 0.55 0.29 0.10

0.00 0.01 0.39 0.41 0.19

0.00 0.08 0.02 0.03 0.88

(h) Model H (68.6%)

Call Drink Rest Talk Text

0.71 0.00 0.19 0.09 0.01

0.03 0.66 0.11 0.09 0.11

0.02 0.05 0.70 0.13 0.11

0.02 0.02 0.28 0.61 0.07

0.00 0.08 0.11 0.07 0.74

(i) Model I (75.3%)

Call Drink Rest Talk Text

0.89 0.01 0.07 0.03 0.01

0.07 0.73 0.08 0.04 0.08

0.02 0.03 0.71 0.13 0.11

0.03 0.02 0.22 0.65 0.08

0.00 0.08 0.11 0.04 0.77

(a) Talk/Call (b) Rest/Drink (c) Rest/Talk (d) Talk/Text

Fig. 4: Misclassified images. Predicted label/true label.

sometimes misclassified as the talk state. An example of this is shown in Figure 4d,
in some cases the images do not provide sufficient information, such as the phone not
being fully visible in the camera field of view.

Model G (Table 1g) is trained on the aligned front seat data from both vehicles,
Model H (Table 1h) and Model I (Table 1i) are trained in aligned, back seat views from
both vehicles. The transfer of weights from the front seat model results in an increase



for all states for the back seat model with the overall average accuracy rising by 6.7%
from 68.6% to 75.3%. Even though Model G originally shows difficulty in discerning
the call class, when used to help train the back seat model, it notably improves the
call state classification accuracy from 71% to 89%.

4 Conclusions

In this paper, we propose a passenger state detection method that uses a convolutional
neural network in combination with viewpoint warping using planar homography. This
enables data which usually cannot be included at the training stage to be effectively
used for re-training, and data re-purposed from driver monitoring to occupant state
classification. The viewpoint normalisation and augmentation also allows the trained
model to be re-trained with additional data to work between vehicle types. To evaluate
the robustness of the proposed method, data was collected in two different vehicles
at three different viewpoints, and used to demonstrate that viewpoint is a significant
factor influencing accuracy. The results show that there is a benefit to using data from
other vehicles and other viewpoints through transfer learning. Furthermore, we show
that it is possible to usefully apply data from the driver monitoring to passenger state
monitoring.

Being able to accurately classify passenger state, albeit to a limited number of
distinct classes, opens up possibilities to build driving state monitoring systems for
passenger-to-passenger and driver-to-passenger interactions. The current results are
limited to well-lit vehicle cabins, and data was only captured with a relatively small
number of people and two vehicle models. To assess the flexibility and robustness of
the approach, future work will focus on further passenger states, data will be collected
in a larger range of vehicle types, and under more demanding lighting environments,
such as during night-time journeys.
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